GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules
نویسندگان
چکیده
Knowledge about the electrostatic potential on the surface of biomolecules or biomembranes under physiological conditions is an important step in the attempt to characterize the physico-chemical properties of these molecules and, in particular, also their interactions with each other. Additionally, knowledge about solution electrostatics may also guide the design of molecules with specified properties. However, explicit water models come at a high computational cost, rendering them unsuitable for large design studies or for docking purposes. Implicit models with the water phase treated as a continuum require the numerical solution of the Poisson-Boltzmann equation (PBE). Here, we present a new flexible program for the numerical solution of the PBE, allowing for different geometries, and the explicit and implicit inclusion of membranes. It involves a discretization of space and the computation of the molecular surface. The PBE is solved using finite differences, the resulting set of equations is solved using a Gauss-Seidel method. It is shown for the example of the sucrose transporter ScrY that the implicit inclusion of a surrounding membrane has a strong effect also on the electrostatics within the pore region and, thus, needs to be carefully considered, e.g., in design studies on membrane proteins.
منابع مشابه
Highly accurate biomolecular electrostatics in continuum dielectric environments
Implicit solvent models based on the Poisson-Boltzmann (PB) equation are frequently used to describe the interactions of a biomolecule with its dielectric continuum environment. A novel, highly accurate Poisson-Boltzmann solver is developed based on the matched interface and boundary (MIB) method, which rigorously enforces the continuity conditions of both the electrostatic potential and its fl...
متن کاملA GPU-accelerated Direct-sum Boundary Integral Poisson-Boltzmann Solver
In this paper, we present a GPU-accelerated direct-sum boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace based linear algebraic solver such as the GMRES. The molecular surfaces are discretized with flat triangles and centroid collocation. To speed up ou...
متن کاملA treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules
We present a treecode-accelerated boundary integral (TABI) solver for electrostatics of solvated biomolecules described by the linear Poisson-Boltzmann equation. The method employs a wellconditioned boundary integral formulation for the electrostatic potential and its normal derivative on the molecular surface. The surface is triangulated and the integral equations are discretized by centroid c...
متن کاملFast Surface Based Electrostatics for biomolecules modeling
We analyze de ciencies of commonly used Coulomb approximations in Generalized Born solvation energy calculation models and report a development of a new fast surface-based method (FSBE) for numerical calculations of the solvation energy of biomolecules with charged groups. The procedure is only a few percents wrong for molecular con gurations of arbitrary sizes, provides explicit values for the...
متن کاملAn Efficient Higher-Order Fast Multipole Boundary Element Solution for Poisson-Boltzmann-Based Molecular Electrostatics
In order to compute polarization energy of biomolecules, we describe a boundary element approach to solving the linearized Poisson-Boltzmann equation. Our approach combines several important features including the derivative boundary formulation of the problem and a smooth approximation of the molecular surface based on the algebraic spline molecular surface. State of the art software for numer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015